- Homepage
- Key Information
- Students
- Staff
- PGR
- Health and Safety
- Computer Support
- National Student Survey (NSS)
- Intranet Help
Engineering, Mathematics and Physical Sciences Intranet
Prof James Screen
Prof James Screen
Publications
Copyright Notice: Any articles made available for download are for personal use only. Any other use requires prior permission of the author and the copyright holder.
| 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2004 |
2024
- Maddison JW, Catto JL, Hanna E, Luu LN, Screen JA. (2024) Missing Increase in Summer Greenland Blocking in Climate Models, Geophysical Research Letters, volume 51, no. 11, DOI:10.1029/2024gl108505. [PDF]
- Mudhar R, Seviour WJM, Screen JA, Geen R, Lewis NT, Thomson SI. (2024) Exploring Mechanisms for Model-Dependency of the Stratospheric Response to Arctic Warming, Journal of Geophysical Research: Atmospheres, volume 129, no. 10, DOI:10.1029/2023JD040416.
- Hay S, Screen JA, Catto JL. (2024) Steady but model dependent Arctic amplification of the forced temperature response in 21st century CMIP6 projections, Environmental Research: Climate, volume 3, no. 3, pages 031003-031003, DOI:10.1088/2752-5295/ad4201. [PDF]
- Fang Y, Screen J, Yang S, Hu X, Lin S. (2024) Unraveling the Forcings behind West Antarctic Summer Melt: CMIP6 Perspectives on Remote Climate Drivers, DOI:10.5194/egusphere-egu24-10419. [PDF]
- Chan CY, England M, Screen J, Bracegirdle T, Blockley E. (2024) Investigating the drivers of abrupt Antarctic sea ice decline, DOI:10.5194/egusphere-egu24-810. [PDF]
- Ye K, Woollings T, Sparrow S, Watson P, Screen J. (2024) Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations , DOI:10.5194/egusphere-egu24-6507. [PDF]
- Oltmanns M, Holliday NP, Screen J, Moat BI, Josey SA, Evans DG, Bacon S. (2024) European summer weather linked to North Atlantic freshwater anomalies in preceding years, Weather and Climate Dynamics, volume 5, no. 1, pages 109-132, DOI:10.5194/wcd-5-109-2024. [PDF]
- Cottrell FM, Screen JA, Scaife AA. (2024) Signal‐to‐noise errors in free‐running atmospheric simulations and their dependence on model resolution, Atmospheric Science Letters, DOI:10.1002/asl.1212. [PDF]
- Lewis NT, Seviour WJM, Roberts‐Straw HE, Screen JA. (2024) The Response of Surface Temperature Persistence to Arctic Sea‐Ice Loss, Geophysical Research Letters, volume 51, no. 2, DOI:10.1029/2023gl106863. [PDF]
- Ye K, Woollings T, Sparrow SN, Watson PAG, Screen JA. (2024) Author Correction: Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations, npj Climate and Atmospheric Science, volume 7, no. 1, article no. 29, DOI:10.1038/s41612-024-00580-x. [PDF]
- Ye K, Woollings T, Sparrow SN, Watson PAG, Screen JA. (2024) Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations, npj Climate and Atmospheric Science, volume 7, no. 1, article no. 20, DOI:10.1038/s41612-023-00562-5. [PDF]
- Liang YC, Kwon YO, Frankignoul C, Gastineau G, Smith KL, Polvani LM, Sun L, Peings Y, Deser C, Zhang R. (2024) The Weakening of the Stratospheric Polar Vortex and the Subsequent Surface Impacts as Consequences to Arctic Sea Ice Loss, Journal of Climate, volume 37, no. 1, pages 309-333, DOI:10.1175/JCLI-D-23-0128.1.
- Cai Z, You Q, Chen HW, Zhang R, Zuo Z, Chen D, Cohen J, Screen JA. (2024) Assessing Arctic wetting: Performances of CMIP6 models and projections of precipitation changes, Atmospheric Research, volume 297, DOI:10.1016/j.atmosres.2023.107124.
- Delhaye S, Massonnet F, Fichefet T, Msadek R, Terray L, Screen J. (2024) Dominant role of early winter Barents–Kara sea ice extent anomalies in subsequent atmospheric circulation changes in CMIP6 models, Climate Dynamics, volume 62, no. 4, pages 2755-2778, DOI:10.1007/s00382-023-06904-6.
2023
- Zheng C, Wu Y, Ting M, Screen JA, Zhang P. (2023) Diverse Eurasian Temperature Responses to Arctic Sea Ice Loss in Models due to Varying Balance between Dynamic Cooling and Thermodynamic Warming, JOURNAL OF CLIMATE, volume 36, no. 24, pages 8347-8364, DOI:10.1175/JCLI-D-22-0937.1. [PDF]
- Geen R, Thomson SI, Screen JA, Blackport R, Lewis NT, Mudhar R, Seviour WJM, Vallis GK. (2023) An Explanation for the Metric Dependence of the Midlatitude Jet‐Waviness Change in Response to Polar Warming, Geophysical Research Letters, volume 50, no. 21, DOI:10.1029/2023gl105132. [PDF]
- Ye K, Woollings T, Sparrow S, Watson P, Screen J. (2023) Response of winter climate and extreme weather to projected Arctic sea-ice loss in very large-ensemble climate model simulations, DOI:10.21203/rs.3.rs-3377649/v1. [PDF]
- Hay S, Priestley MDK, Yu H, Catto JL, Screen JA. (2023) The Effect of Arctic Sea‐Ice Loss on Extratropical Cyclones, Geophysical Research Letters, volume 50, no. 17, DOI:10.1029/2023gl102840. [PDF]
- Morten JM, Buchanan PJ, Egevang C, Glissenaar IA, Maxwell SM, Parr N, Screen JA, Vigfúsdóttir F, Vogt‐Vincent NS, Williams DA. (2023) Global warming and arctic terns: Estimating climate change impacts on the world's longest migration, Global Change Biology, volume 29, no. 19, pages 5596-5614, DOI:10.1111/gcb.16891. [PDF]
- Warner JL, Screen JA, Scaife AA, Maidens A, Knight J. (2023) Tropical Forcing of Barents‐Kara Sea Ice During Autumn, Geophysical Research Letters, volume 50, no. 8, DOI:10.1029/2023gl102768. [PDF]
- Yu H, Screen JA, Hay S, Catto JL, Xu M. (2023) Winter Precipitation Responses to Projected Arctic Sea Ice Loss and Global Ocean Warming and Their Opposing Influences over the Northeast Atlantic Region, Journal of Climate, volume 36, no. 15, pages 4951-4966, DOI:10.1175/jcli-d-22-0774.1. [PDF]
- Williams NC, Scaife AA, Screen JA. (2023) Underpredicted ENSO Teleconnections in Seasonal Forecasts, Geophysical Research Letters, volume 50, no. 5, DOI:10.1029/2022gl101689. [PDF]
- Ye K, Woollings T, Screen JA. (2023) European Winter Climate Response to Projected Arctic Sea‐Ice Loss Strongly Shaped by Change in the North Atlantic Jet, Geophysical Research Letters, volume 50, no. 5, DOI:10.1029/2022gl102005. [PDF]
- Xu M, Screen J, Tian W, Zhang J. (2023) Influence of future 2-degree-global-warming regional sea-ice loss on the Arctic stratospheric polar vortex, DOI:10.5194/egusphere-egu23-10310. [PDF]
- Lo E, Mitchell D, Watson PAG, Screen JA. (2023) Effects of future Arctic sea-ice loss and ocean warming on winter temperature extremes in the Northern Hemisphere, DOI:10.5194/egusphere-egu23-6779. [PDF]
- Yu H, Screen J, Hay S, Catto J, Xu M. (2023) Winter Precipitation Responses to Projected Arctic Sea-Ice Loss and Global Ocean Warming and Their Opposing Influences over Northwest Europe, DOI:10.5194/egusphere-egu23-1247. [PDF]
- Mudhar R, Geen R, Lewis N, Screen J, Seviour W, Thomson S. (2023) Understanding the Stratospheric Response to Arctic Amplification, DOI:10.5194/egusphere-egu23-5682. [PDF]
- Hay S, Priestley M, Yu H, Catto J, Screen J. (2023) The effect of Arctic sea-ice loss on extratropical cyclones, DOI:10.5194/egusphere-egu23-16169. [PDF]
- Delhaye S, Massonnet F, Fichefet T, Msadek R, Terray L, Screen J. (2023) Consistent atmospheric circulation responses due to Arctic sea ice loss between prescribed sea ice simulations and single long control simulations, DOI:10.5194/egusphere-egu23-12191. [PDF]
- Chatterjee S, Selivanova J, Semmler T, Screen JA. (2023) Ocean response to reduced Arctic sea ice in PAMIP simulations, DOI:10.5194/egusphere-egu23-4822. [PDF]
- Lewis N, Geen R, Mudhar R, Seviour W, Thomson S, Vallis G, Screen J. (2023) Investigating Uncertainty in the Mid-latitude Response to Sea-Ice Loss with Idealised General Circulation Model Experiments, DOI:10.5194/egusphere-egu23-10037. [PDF]
- Ye K, Woollings T, Screen J. (2023) European winter climate response to projected Arctic sea-ice loss strongly shaped by change in the North Atlantic jet, DOI:10.5194/egusphere-egu23-7373. [PDF]
- Xu M, Tian W, Zhang J, Screen JA, Zhang C, Wang Z. (2023) Important role of stratosphere-troposphere coupling in the Arctic mid-to-upper tropospheric warming in response to sea-ice loss, npj Climate and Atmospheric Science, volume 6, no. 1, article no. 9, DOI:10.1038/s41612-023-00333-2. [PDF]
- Geen R, Thomson S, Screen J, Vallis G. (2023) Perceived midlatitude jet waviness response to polar warming is sensitive to warming structure and metric choice, DOI:10.5194/egusphere-egu23-2569. [PDF]
- Williams N, Scaife A, Screen J. (2023) Model Resolution Effects on ENSO and its Teleconnections, DOI:10.5194/egusphere-egu23-3263. [PDF]
- Lo YTE, Mitchell DM, Watson PAG, Screen JA. (2023) Changes in Winter Temperature Extremes From Future Arctic Sea‐Ice Loss and Ocean Warming, Geophysical Research Letters, volume 50, no. 3, DOI:10.1029/2022gl102542. [PDF]
- Oltmanns M, Holliday NP, Screen J, Moat BI, Josey SA, Evans DG, Bacon S. (2023) European summer weather linked to North Atlantic freshwater events in preceding years, DOI:10.5194/wcd-2023-1. [PDF]
2022
- Lo YTE, Mitchell DM, Watson PAG, Screen JA. (2022) Changes in Winter Temperature Extremes from Future Arctic Sea-Ice Loss and Ocean Warming, DOI:10.22541/essoar.167117452.20503551/v1. [PDF]
- Screen JA, Eade R, Smith DM, Thomson S, Yu H. (2022) Net Equatorward Shift of the Jet Streams When the Contribution From Sea‐Ice Loss Is Constrained by Observed Eddy Feedback, Geophysical Research Letters, volume 49, no. 23, DOI:10.1029/2022gl100523. [PDF]
- Zhang R, Screen JA, Zhang R. (2022) Arctic and Pacific Ocean Conditions Were Favorable for Cold Extremes over Eurasia and North America during Winter 2020/21, Bulletin of the American Meteorological Society, volume 103, no. 10, pages E2285-E2301, DOI:10.1175/BAMS-D-21-0264.1.
- Walsh A, Screen JA, Scaife AA, Smith DM. (2022) Non‐Linear Response of the Extratropics to Tropical Climate Variability, Geophysical Research Letters, volume 49, no. 23, DOI:10.1029/2022gl100416. [PDF]
- Williams NC, Scaife AA, Screen JA. (2022) Underpredicted ENSO Teleconnections in Seasonal Forecasts, DOI:10.1002/essoar.10512740.1. [PDF]
- Zhang T, van der Wiel K, Wei T, Screen J, Yue X, Zheng B, Selten F, Bintanja R, Anderson W, Blackport R. (2022) Increased wheat price spikes and larger economic inequality with 2°C global warming, One Earth, volume 5, no. 8, pages 907-916, DOI:10.1016/j.oneear.2022.07.004.
- Lo YTE, Mitchell DM, Watson PAG, Screen JA. (2022) Cold Weather Teleconnections from Future Arctic Sea Ice Loss and Ocean Warming, DOI:10.1002/essoar.10512271.1. [PDF]
- Screen JA, Eade R, Smith DM, Thomson SI, Yu H. (2022) Observationally constrained equatorward shift of the jet streams in response to ocean warming and sea-ice loss combined, DOI:10.1002/essoar.10511992.1. [PDF]
- Williams NC, Scaife AA, Screen JA. (2022) Underpredicted ENSO Teleconnections in Seasonal Forecasts, DOI:10.1002/essoar.10511953.1. [PDF]
- Ayres HC, Screen JA, Blockley EW, Bracegirdle TJ. (2022) The Coupled Atmosphere–Ocean Response to Antarctic Sea Ice Loss, Journal of Climate, volume 35, no. 14, pages 4665-4685, DOI:10.1175/jcli-d-21-0918.1. [PDF]
- Hay S, Kushner PJ, Blackport R, McCusker KE, Oudar T, Sun L, England M, Deser C, Screen JA, Polvani LM. (2022) Separating the Influences of Low-Latitude Warming and Sea Ice Loss on Northern Hemisphere Climate Change, Journal of Climate, volume 35, no. 8, pages 2327-2349, DOI:10.1175/JCLI-D-21-0180.1.
- Walsh A, Screen J, Scaife A, Smith D. (2022) Non-linearity in the extratropical teleconnection to ENSO and the QBO, DOI:10.5194/egusphere-egu22-7446. [PDF]
- Williams N, Scaife A, Screen J. (2022) Weak ENSO teleconnections contribute to the signal-to-noise paradox , DOI:10.5194/egusphere-egu22-3880. [PDF]
- Mitchell DM, Stone EJ, Andrews OD, Bamber JL, Bingham RJ, Browse J, Henry M, MacLeod DM, Morten JM, Sauter CA. (2022) The Bristol
CMIP6 Data Hackathon, Weather, volume 77, no. 6, pages 218-221, DOI:10.1002/wea.4161. [PDF] - Blackport R, Fyfe JC, Screen JA. (2022) Arctic change reduces risk of cold extremes, Science, volume 375, no. 6582, DOI:10.1126/science.abn2414. [PDF]
- Smith DM, Eade R, Andrews MB, Ayres H, Clark A, Chripko S, Deser C, Dunstone NJ, García-Serrano J, Gastineau G. (2022) Robust but weak winter atmospheric circulation response to future Arctic sea ice loss, Nat Commun, volume 13, no. 1, DOI:10.1038/s41467-022-28283-y. [PDF]
2021
- Oltmanns M, Holliday NP, Screen J, Evans DG, Josey SA, Bacon S, Moat BI. (2021) North Atlantic freshwater events influence European weather in subsequent summers, DOI:10.5194/wcd-2021-79. [PDF]
- McCrystall MR, Stroeve J, Serreze M, Forbes BC, Screen JA. (2021) New climate models reveal faster and larger increases in Arctic precipitation than previously projected, NATURE COMMUNICATIONS, volume 12, no. 1, article no. ARTN 6765, DOI:10.1038/s41467-021-27031-y. [PDF]
- Blackport R, Fyfe JC, Screen JA. (2021) Decreasing subseasonal temperature variability in the northern extratropics attributed to human influence, Nature Geoscience, volume 14, no. 10, pages 719-723, DOI:10.1038/s41561-021-00826-w. [PDF]
- Xu M, Tian W, Zhang J, Screen JA, Huang J, Qie K, Wang T. (2021) Distinct Tropospheric and Stratospheric Mechanisms Linking Historical Barents‐Kara Sea‐Ice Loss and Late Winter Eurasian Temperature Variability, Geophysical Research Letters, volume 48, no. 20, DOI:10.1029/2021gl095262. [PDF]
- Screen JA. (2021) An ice-free Arctic: what could it mean for European weather?, WEATHER, volume 76, no. 10, pages 327-328, DOI:10.1002/wea.4069. [PDF]
- Xu P, Wang L, Vallis GK, Geen R, Screen JA, Wu P, Ding S, Huang P, Chen W. (2021) Amplified Waveguide Teleconnections Along the Polar Front Jet Favor Summer Temperature Extremes Over Northern Eurasia, Geophysical Research Letters, volume 48, no. 13, DOI:10.1029/2021gl093735. [PDF]
- Zhang R, Screen JA. (2021) Diverse Eurasian Winter Temperature Responses to Barents‐Kara Sea Ice Anomalies of Different Magnitudes and Seasonality, Geophysical Research Letters, volume 48, no. 13, DOI:10.1029/2021gl092726. [PDF]
- McCrystall MR, Screen JA. (2021) Arctic Winter Temperature Variations Correlated With ENSO Are Dependent on Coincidental Sea Ice Changes, Geophysical Research Letters, volume 48, no. 8, DOI:10.1029/2020GL091519.
- Oltmanns M, Holliday NP, Screen J, Evans DG, Josey SA, Moat B, Karstensen J, Moore GWK. (2021) How does the Arctic affect North Atlantic climate? Fresh perspectives on a long-standing question, DOI:10.5194/egusphere-egu21-5271. [PDF]
- Blackport R, Screen JA. (2021) Observed Statistical Connections Overestimate the Causal Effects of Arctic Sea Ice Changes on Midlatitude Winter Climate, Journal of Climate, volume 34, no. 8, pages 3021-3038, DOI:10.1175/jcli-d-20-0293.1. [PDF]
2020
- Blackport R, Screen JA. (2020) Weakened evidence for mid-latitude impacts of Arctic warming, Nature Climate Change, volume 10, no. 12, pages 1065-1066, DOI:10.1038/s41558-020-00954-y. [PDF]
- Osborne JM, Collins M, Screen JA, Thomson SI, Dunstone N. (2020) The North Atlantic as a driver of summer atmospheric circulation, Journal of Climate, volume 33, no. 17, pages 7335-7351, DOI:10.1175/JCLI-D-19-0423.1.
- Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, DiNezio PN, Fiore A, Frankignoul C, Fyfe JC, Horton DE. (2020) Publisher Correction: Insights from Earth system model initial-condition large ensembles and future prospects (Nature Climate Change, (2020), 10, 4, (277-286), 10.1038/s41558-020-0731-2), Nature Climate Change, volume 10, no. 8, DOI:10.1038/s41558-020-0854-5.
- Warner J. (2020) Causality of the Link between Autumn Arctic Sea Ice and the Winter Extratropical Atmosphere.
- Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, DiNezio PN, Fiore A, Frankignoul C, Fyfe JC, Horton DE. (2020) Insights from Earth system model initial-condition large ensembles and future prospects, NATURE CLIMATE CHANGE, volume 10, no. 4, pages 277-+, DOI:10.1038/s41558-020-0731-2. [PDF]
- Kelleher ME, Ayarzagüena B, Screen JA. (2020) Interseasonal connections between the timing of the stratospheric final warming and arctic sea ice, Journal of Climate, volume 33, no. 8, pages 3079-3092, DOI:10.1175/JCLI-D-19-0064.1.
- Kolstad EW, Screen JA, Årthun M. (2020) Nonstationary lagged relationships between the Arctic and the midlatitudes, DOI:10.5194/egusphere-egu2020-11159. [PDF]
- Walsh A, Screen J, Scaife A, Smith D, Eade R. (2020) Model and state dependence of the atmospheric response to Arctic sea-ice loss, DOI:10.5194/egusphere-egu2020-11872. [PDF]
- Blackport R, Screen JA. (2020) Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves, Science Advances, volume 6, no. 8, DOI:10.1126/sciadv.aay2880. [PDF]
- van der Wiel K, Selten FM, Bintanja R, Blackport R, Screen JA. (2020) Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions, Environmental Research Letters, volume 15, no. 3, pages 034050-034050, DOI:10.1088/1748-9326/ab7668. [PDF]
- Halloran PR, Hall IR, Menary M, Reynolds DJ, Scourse JD, Screen JA, Bozzo A, Dunstone N, Phipps S, Schurer AP. (2020) Natural drivers of multidecadal Arctic sea ice variability over the last millennium, Scientific Reports, volume 10, no. 1, article no. 688, DOI:10.1038/s41598-020-57472-2. [PDF]
- Warner JL, Screen JA, Scaife AA. (2020) Links Between Barents‐Kara Sea Ice and the Extratropical Atmospheric Circulation Explained by Internal Variability and Tropical Forcing, Geophysical Research Letters, volume 47, no. 1, DOI:10.1029/2019gl085679. [PDF]
2019
- Screen JA, Blackport R. (2019) Is sea-ice-driven Eurasian cooling too weak in models?, Nature Climate Change, volume 9, no. 12, pages 934-936, DOI:10.1038/s41558-019-0635-1. [PDF]
- Screen JA, Blackport R. (2019) How Robust is the Atmospheric Response to Projected Arctic Sea Ice Loss Across Climate Models?, Geophysical Research Letters, volume 46, no. 20, pages 11406-11415, DOI:10.1029/2019gl084936. [PDF]
- van der Wiel K, Bloomfield HC, Lee RW, Stoop LP, Blackport R, Screen JA, Selten FM. (2019) The influence of weather regimes on European renewable energy production and demand, Environmental Research Letters, volume 14, no. 9, pages 094010-094010, DOI:10.1088/1748-9326/ab38d3. [PDF]
- Screen J, Blackport R. (2019) How Robust is the Atmospheric Response to Projected Arctic Sea-Ice Loss Across Climate Models?.
- Ayres HC, Screen JA. (2019) Multimodel Analysis of the Atmospheric Response to Antarctic Sea Ice Loss at Quadrupled CO
2 , Geophysical Research Letters, volume 46, no. 16, pages 9861-9869, DOI:10.1029/2019GL083653. - Blackport R, Screen JA, van der Wiel K, Bintanja R. (2019) Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes, Nature Climate Change, volume 9, no. 9, pages 697-704, DOI:10.1038/s41558-019-0551-4.
- Kolstad EW, Screen JA. (2019) Nonstationary Relationship Between Autumn Arctic Sea Ice and the Winter North Atlantic Oscillation, Geophysical Research Letters, volume 46, no. 13, pages 7583-7591, DOI:10.1029/2019GL083059.
- Osborne JM, Collins M, Screen JA, Thomson SI, Dunstone N. (2019) The North Atlantic as a driver of summer atmospheric circulation (dataset).
- Smith DM, Screen JA, Deser C, Cohen J, Fyfe JC, García-Serrano J, Jung T, Kattsov V, Matei D, Msadek R. (2019) The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification, Geoscientific Model Development, volume 12, no. 3, pages 1139-1164, DOI:10.5194/gmd-12-1139-2019.
- Blackport R, Screen JA. (2019) Influence of Arctic Sea Ice Loss in Autumn Compared to That in Winter on the Atmospheric Circulation, Geophysical Research Letters, volume 46, no. 4, pages 2213-2221, DOI:10.1029/2018GL081469.
2018
- Smith DM, Screen JA, Deser C, Cohen J, Fyfe JC, García-Serrano J, Jung T, Kattsov V, Matei D, Msadek R. (2018) The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, DOI:10.5194/gmd-2018-82. [PDF]
- Blackport R. (2018) Influence of Arctic Sea-Ice Loss in Autumn Compared to that in Winter on the Atmospheric Circulation.
- Screen JA. (2018) Arctic sea ice at 1.5 and 2 °c, Nature Climate Change, volume 8, no. 5, pages 362-363, DOI:10.1038/s41558-018-0137-6.
- Screen JA, Deser C, Smith DM, Zhang X, Blackport R, Kushner PJ, Oudar T, McCusker KE, Sun L. (2018) Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models, Nature Geoscience, volume 11, no. 3, pages 155-163, DOI:10.1038/s41561-018-0059-y.
- Kelleher M, Screen J. (2018) Atmospheric precursors of and response to anomalous Arctic sea ice in CMIP5 models, Advances in Atmospheric Sciences, volume 35, no. 1, pages 27-37, DOI:10.1007/s00376-017-7039-9.
2017
- Lee S, Gong T, Feldstein SB, Screen JA, Simmonds I. (2017) Revisiting the Cause of the 1989–2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared Radiation Dominates the Surface Fluxes, Geophysical Research Letters, volume 44, no. 20, DOI:10.1002/2017gl075375. [PDF]
- Day JJ, Svensson G, Brooks IM, Bitz C, Broman L, Carver G, Chevallier M, Goessling H, Hartung K, Jung T. (2017) The abisko polar prediction school, Bulletin of the American Meteorological Society, volume 98, no. 3, pages 445-447, DOI:10.1175/BAMS-D-16-0119.1.
- Screen JA, Williamson D. (2017) Ice-free Arctic at 1.5 °C?, NATURE CLIMATE CHANGE, volume 7, no. 4, pages 230-231, DOI:10.1038/nclimate3248. [PDF]
- Screen JA. (2017) CLIMATE SCIENCE Far-flung effects of Arctic warming, NATURE GEOSCIENCE, volume 10, no. 4, pages 253-254, DOI:10.1038/ngeo2924. [PDF]
- Osborne JM, Screen JA, Collins M. (2017) Ocean-atmosphere state dependence of the atmospheric response to Arctic sea ice loss, Journal of Climate, volume 30, pages 1537-1552, DOI:10.1175/JCLI-D-16-0531.1.
2016
- Overland JE, Dethloff K, Francis JA, Hall RJ, Hanna E, Kim SJ, Screen JA, Shepherd TG, Vihma T. (2016) Nonlinear response of mid-latitude weather to the changing Arctic, Nature Climate Change, volume 6, no. 11, pages 992-999, DOI:10.1038/nclimate3121.
- Spengler T, Renfrew IA, Terpstra A, Tjernström M, Screen J, Brooks IM, Carleton A, Chechin D, Chen L, Doyle J. (2016) High-latitude dynamics of atmosphere-ice-ocean interactions, Bulletin of the American Meteorological Society, volume 97, no. 9, pages ES179-ES182, DOI:10.1175/BAMS-D-15-00302.1.
- Screen JA, Jennifer A. Francis. (2016) Contribution of sea-ice loss to Arctic amplification regulated by Pacific Ocean decadal variability, Nature Climate Change, DOI:10.1038/nclimate3011. [PDF]
- Clara Deser, Robert A. Tomas, Lantao Sun, Screen JA. (2016) Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss?, Geophysical Research Letters.
- Lique C, Holland MM, Dibike YB, Lawrence DM, Screen JA. (2016) Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges, Journal of Geophysical Research: Biogeosciences, volume 121, no. 3, pages 540-566, DOI:10.1002/2015jg003120. [PDF]
- Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, Deser C, Holland M, Prowse T. (2016) The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts, Journal of Geophysical Research: Biogeosciences, volume 121, no. 3, pages 586-620, DOI:10.1002/2015jg003132. [PDF]
2015
- Screen JA, Deser C, Sun L. (2015) Projected changes in regional climate extremes arising from Arctic sea ice loss, Environmental Research Letters, volume 10, no. 8, DOI:10.1088/1748-9326/10/8/084006.
- Huntingford C, Marsh T, Scaife AA, Kendon EJ, Hannaford J, Kay AL, Lockwood M, Prudhomme C, Reynard NS, Parry S. (2015) Reply to 'Drivers of the 2013/14 winter floods in the UK', Nature Climate Change, volume 5, no. 6, pages 491-492, DOI:10.1038/nclimate2613.
- Barnes EA, Screen JA. (2015) The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, Wiley Interdisciplinary Reviews: Climate Change, volume 6, no. 3, pages 277-286, DOI:10.1002/wcc.337.
- Screen JA, Deser C, Sun L. (2015) Reduced Risk of North American Cold Extremes due to Continued Arctic Sea Ice Loss, Bulletin of the American Meteorological Society, volume 96, no. 9, pages 1489-1503, DOI:10.1175/bams-d-14-00185.1. [PDF]
- Barnes EA, Screen JA. (2015) The impact of Arctic warming on the midlatitude jet‐stream: Can it? Has it? Will it?, WIREs Climate Change, volume 6, no. 3, pages 277-286, DOI:10.1002/wcc.337. [PDF]
2014
- Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J. (2014) Recent Arctic amplification and extreme mid-latitude weather, Nature Geoscience, volume 7, no. 9, pages 627-637, DOI:10.1038/ngeo2234.
- Huntingford C, Marsh T, Scaife AA, Kendon EJ, Hannaford J, Kay AL, Lockwood M, Prudhomme C, Reynard NS, Parry S. (2014) Potential influences on the United Kingdom's floods of winter 2013/14, Nature Climate Change, volume 4, no. 9, pages 769-777, DOI:10.1038/nclimate2314.
- Screen JA, Deser C, Simmonds I, Tomas R. (2014) Atmospheric impacts of Arctic sea-ice loss, 1979-2009: separating forced change from atmospheric internal variability, CLIMATE DYNAMICS, volume 43, no. 1-2, pages 333-344, DOI:10.1007/s00382-013-1830-9. [PDF]
- Screen JA, Simmonds I. (2014) Amplified mid-latitude planetary waves favour particular regional weather extremes, Nature Climate Change, volume 4, no. 8, pages 704-709, DOI:10.1038/nclimate2271.
- Screen JA. (2014) Arctic amplification decreases temperature variance in northern mid- to high-latitudes, Nature Climate Change, volume 4, no. 7, pages 577-582, DOI:10.1038/nclimate2268.
2013
- Christensen JH, Kanikicharla KK, Aldrian E, An SI, Albuquerque Cavalcanti IF, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK. (2013) Climate phenomena and their relevance for future regional climate change, Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1217-1308, DOI:10.1017/CBO9781107415324.028.
- Screen JA. (2013) Influence of Arctic sea ice on European summer precipitation, Environmental Research Letters, volume 8, no. 4, DOI:10.1088/1748-9326/8/4/044015.
- Screen JA, Deser C, Simmonds I, Tomas R. (2013) Atmospheric impacts of Arctic sea-ice loss, 1979-2009: separating forced change from atmospheric internal variability, Climate Dynamics, pages 1-12.
- Screen JA, Simmonds I. (2013) Exploring links between Arctic amplification and mid-latitude weather, Geophysical Research Letters, volume 40, no. 5, pages 959-964, DOI:10.1002/grl.50174.
- Screen JA, Simmonds I. (2013) Caution needed when linking weather extremes to amplified planetary waves, Proc Natl Acad Sci U S A, volume 110, no. 26, DOI:10.1073/pnas.1304867110. [PDF]
- Screen JA, Simmonds I, Deser C, Tomas R. (2013) The atmospheric response to three decades of observed arctic sea ice loss, Journal of Climate, volume 26, no. 4, pages 1230-1248, DOI:10.1175/JCLI-D-12-00063.1.
2012
- Handmer J, Honda Y, Kundzewicz ZW, Arnell N, Benito G, Hatfield J, Mohamed IF, Peduzzi P, Wu S, Sherstyukov B. (2012) Changes in impacts of climate extremes: Human systems and ecosystems, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, 231-290, DOI:10.1017/CBO9781139177245.007.
- Screen JA, Simmonds I. (2012) Declining summer snowfall in the Arctic: Causes, impacts and feedbacks, Climate Dynamics, volume 38, no. 11-12, pages 2243-2256, DOI:10.1007/s00382-011-1105-2.
- Screen JA, Deser C, Simmonds I. (2012) Local and remote controls on observed Arctic warming, Geophysical Research Letters, volume 39, no. 10, DOI:10.1029/2012GL051598.
- Screen JA, Simmonds I. (2012) Half-century air temperature change above Antarctica: Observed trends and spatial reconstructions, Journal of Geophysical Research Atmospheres, volume 117, no. 16, DOI:10.1029/2012JD017885.
2011
- Screen JA, Simmonds I. (2011) Erroneous arctic temperature trends in the ERA-40 reanalysis: A closer look, Journal of Climate, volume 24, no. 10, pages 2620-2627, DOI:10.1175/2010JCLI4054.1.
- Screen JA. (2011) Sudden increase in Antarctic sea ice: Fact or artifact?, Geophysical Research Letters, volume 38, no. 13, DOI:10.1029/2011GL047553.
- Screen JA, Simmonds I, Keay K. (2011) Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity, Journal of Geophysical Research Atmospheres, volume 116, no. 15, DOI:10.1029/2011JD015847.
2010
- Screen JA, Gillett NP, Karpechko AY, Stevens DP. (2010) Mixed layer temperature response to the southern annular mode: Mechanisms and model representation, Journal of Climate, volume 23, no. 3, pages 664-678, DOI:10.1175/2009JCLI2976.1.
- Screen JA, Simmonds I. (2010) Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification, Geophysical Research Letters, volume 37, no. 16, DOI:10.1029/2010GL044136.
- Screen JA, Simmonds I. (2010) The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, volume 464, no. 7293, pages 1334-1337, DOI:10.1038/nature09051. [PDF]
- O'Neill SJ, Hulme M, Turnpenny J, Screen JA. (2010) Disciplines, Geography, and Gender in the Framing of Climate Change, BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, volume 91, no. 8, pages 997-1002, DOI:10.1175/2010BAMS2973.1. [PDF]
2009
- Screen JA, Gillet NP, Stevens DP, Marshall GJ, Roscoe HK. (2009) The role of eddies in the Southern Ocean temperature response to the southern annular mode, Journal of Climate, volume 22, no. 3, pages 806-818, DOI:10.1175/2008JCLI2416.1.
- Karpechko AY, Gillett NP, Marshall GJ, Screen JA. (2009) Climate impacts of the southern annular mode simulated by the CMIP3 models, Journal of Climate, volume 22, no. 13, pages 3751-3768, DOI:10.1175/2009JCLI2788.1.
- Karpechko AY, Gillett NP, Marshall GJ, Screen JA. (2009) Corrigendum, Journal of Climate, volume 22, no. 22, pages 6149-6150, DOI:10.1175/2009JCLI3400.1.
2004
- Screen JA, MacKenzie AR. (2004) Aircraft condensation trails and cirrus, Weather, volume 59, no. 5, pages 116-121, DOI:10.1256/wea.140.03.
Showing 132 publications from Symplectic.