- Homepage
- Key Information
- Students
- Staff
- PGR
- Health and Safety
- Computer Support
- National Student Survey (NSS)
- Intranet Help
- Profile
- Publications
Prof Andreas Langer
Professor
Location: Harrison 316
Telephone: 01392 725278
Extension: (Streatham) 5278
Research Interests
- Arithmetic geometry, in particular:
- Arithmetic conjectures on algebraic cycles in connection with p-adic Hodge-theory,
- Crystalline cohomology over a non-perfect base
- Integral p-adic Hodge- theory
Courses taught in Exeter in 2022-2023 Algebraic Curves, Algebraic Number Theory
Recent publications: A.Langer, T Zink: Grothendieck-Messing deformation theory for varieties of K3-type , Tunisian Journal of Math, Vol 1 no4, 2019, pp 455-516
A.Langer: p-adic deformation of motivic Chow groups , Documenta Math. 23 , 2018, 1863-1894
O.Gregory, A.Langer: Overconvergent de Rham-Witt cohomology for semistable varieties, Muenster Mathematical Journal, Vol 13,2. 2020, pp 541-571.
O.Gregory, A.Langer: Higher Displays arising from filtered de Rham-Witt complexes, in: Arithmetic L-functions and Differential Geometric Methods, Proceedings to "Regulators IV" , Paris 2016,Progress in Mathematics Vol 338, 2021, pp 121-140
A.Langer and T. Zink: A Comparison of logarithmic overconvergent de Rham-Witt and logarithmic crystalline cohomology for projective smooth varieties with normal crossing divisor.Padova Math.Journal 2017
A.Langer, T Zink,, Comparison between overconvergent de Rham-Witt and crystalline cohomology for projective smooth varieties, Math. Nachrichten 288, No. 11-12, (2015) 1388-1393
O.Gregory, A.Langer: Hodge-Witt decomposition of relative crystalline cohomology, Journal of the London Mathematical Society, DOI: 10.1112/jlms.12679. Volume 106, issue 4, (2022), pp 4009-4046
O.Gregory, A.Langer: A Log-Motivic Cohomology for semistable varieties and its p-adic deformation theory, preprint 2023. arxiv.
A.Langer: Overconvergent prismatic cohomology, preprint 2023, arxiv.
Grants: EPSRC Standard Grant Project No T005351/1 , Title: Integral p-adic Hodge-theory and applications to p.adic deformation theory. 1/2020-12/2022