MTHM605 - Complex Systems (2023)

Back | Download as PDF
MODULE TITLEComplex Systems CREDIT VALUE15
MODULE CODEMTHM605 MODULE CONVENERDr Mark Callaway (Coordinator)
DURATION: TERM 1 2 3
DURATION: WEEKS 0 11 0
Number of Students Taking Module (anticipated) 10
DESCRIPTION - summary of the module content
This module will probe new developments in complex systems modelling. The current era of big, complex and diverse datasets necessitates the development and understanding of complex system models. In this module, you will explore how simple rule-based inter-connected systems can give rise to enormous complexity in natural and man-made systems. Informed by practical examples, you will learn concepts from nonlinear dynamics such as chaos and bifurcation in deterministic and stochastic systems, fractal geometry, complex networks, emergence in cellular automata, self-organization, adaption, feedback loops, random fields and cascaded failures. Using state-of-the-art scientific computing software, you will simulate and develop your understanding of the nonlinear and often chaotic behaviours of weather sciences, interconnected power systems and financial systems; and visualise the real-life patterns found in remote sensing images of coastlines, plant leaves, animal skins and chemical reactions.
 
Prerequisites: MTHM607; Students should also have a general understanding of dynamical systems and differential equations at undergraduate level.
 
 
AIMS - intentions of the module

In this module, you will encounter a wide range of dynamical behaviours exhibited by complex systems in nature, society and technology. You will gain an understanding of the underlying mechanisms that lead to complex behaviour and how to model complex systems computationally. By gaining an understanding of the paradigms and methods of complexity science you will be well equipped to undertake further studies in this emerging discipline, which is vital to understanding our increasingly complex world.

INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module you should be able to:

Module Specific Skills and Knowledge

1. Understand fundamental concepts from nonlinear dynamics and complexity science and gain familiarity through prototypical case studies;
2. Acquire skills in modelling and simulating complex systems numerically;

Discipline Specific Skills and Knowledge

3. Understand both the power and limitations of current complex systems modelling techniques;
4. Decide on appropriate modelling approaches;

Personal and Key Transferable / Employment Skills and Knowledge

5. Develop high level skills in programming and computational modelling;
6. Communicate the value of modelling and simulation of complex systems to a range of end users in ecology, environmental science or energy engineering.

 

SYLLABUS PLAN - summary of the structure and academic content of the module
The module is structured in three blocks in which a specific topic is introduced and explored through computer labs. The topics may vary over time to reflect the most up to date research and educational practice. Examples of the material to be covered include:
 
Nonlinear Dynamics
Hamiltonian Systems
Dissipative Systems
Bifurcations
Chaos and Strange Attractors
 
Fractal Geometry
Understanding fractal geometry
Fractals arising from mathematical models and nature
 
Emergence and self-organisation
Cellular Automata
Agent Based Models
 
Complex Networks
Network Models
Networked Dynamical Systems (e.g. Synchronisation, Neural Networks)
 
Stochastic Systems
Statistical Physics
Criticality
Optimisation (e.g. Genetic Algorithms, Simulated Annealing)
 
Game Theory
Cooperation and Conflict
Nash Equilibria
 
LEARNING AND TEACHING
LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)
Scheduled Learning & Teaching Activities 33.00 Guided Independent Study 117.00 Placement / Study Abroad 0.00
DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS
Category Hours of study time Description
Scheduled Learning and Teaching activities 11 Lectures
Scheduled Learning and Teaching activities 22 Computer Labs
Guided Independent Study 117 Independent Study

 

ASSESSMENT
FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade
Form of Assessment Size of Assessment (e.g. duration/length) ILOs Assessed Feedback Method
Informal exercises and practicals One sheet per topic 1-5 Written/Oral

 

SUMMATIVE ASSESSMENT (% of credit)
Coursework 100 Written Exams 0 Practical Exams 0
DETAILS OF SUMMATIVE ASSESSMENT
Form of Assessment % of Credit Size of Assessment (e.g. duration/length) ILOs Assessed Feedback Method
Worksheets 60% One worksheet per topic 1-5 Written/Oral
Investigation 40%
In-depth investigation based on one or more topics. Assessed by report (approx. 2000 words / 10 pages) plus computer code.
 
1-6 Written/Oral

 

DETAILS OF RE-ASSESSMENT (where required by referral or deferral)
Original Form of Assessment Form of Re-assessment ILOs Re-assessed Time Scale for Re-assessment
Worksheets Coursewrk (100%) 1-5 To be agreed by consequences of failure meeting
Investigation Coursework (100%) 1-6 To be agreed by consequences of failure meeting

 

RE-ASSESSMENT NOTES
Deferral – if you miss an assessment for certificated reasons judged acceptable by the Mitigation Committee, you will normally be either deferred in the assessment or an extension may be granted. The mark given for a re-assessment taken as a result of deferral will not be capped and will be treated as it would be if it were your first attempt at the assessment.
 
Referral – if you have failed the module overall (i.e. a final overall module mark of less than 50%) you will be required to resubmit the original assessment as necessary. The mark given for a re-assessment taken as a result of referral will be capped at 50%.
RESOURCES
INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of
information that you are expected to consult. Further guidance will be provided by the Module Convener

Reading list for this module:

Type Author Title Edition Publisher Year ISBN Search
Set Strogatz, S.H. Nonlinear Dynamics and Chaos 2nd Westview Press 2015 978-0429492563 [Library]
Set Wolfram, S. A New Kind of Science Wolfram Media 2002 1579550088 [Library]
Set Hu, J., Wang, Z. & Gao, H. Nonlinear Stochastic Systems with Network-induced Phenomena: Recursive Filtering and Sliding-mode Design Springer 2015 978-3319087108 [Library]
Set Gillman, R.A. & David Housman, D. Game theory: a Modeling Approach CRC Press 2019 978-1482248098 [Library]
CREDIT VALUE 15 ECTS VALUE 7.5
PRE-REQUISITE MODULES MTHM607
CO-REQUISITE MODULES
NQF LEVEL (FHEQ) 7 AVAILABLE AS DISTANCE LEARNING No
ORIGIN DATE Monday 14 December 2020 LAST REVISION DATE Friday 27 January 2023
KEY WORDS SEARCH Complexity; Computational Modelling; Dynamical Systems; Networks; Stochastic Systems